Enhancing Typing Speed of P300 Speller Using Ensemble of Support Vector Machines with Dataset Manipulation for Increased Diversity

Amir Demir 1* , Yashar Pasha ¹

¹ Electrical and Biomedical Engineering Department, Near East University, Nicosia, Turkey

* amir.dmr@gmail.com

(Received: $21th$ June 2021; Accepted: 5^h September 2021; Published on-line: $8th$ September 2021)

Abstract

The P300 speller is a valuable brain-computer interface system that allows typing by analyzing electroencephalogram (EEG) signals generated in response to visual stimuli. Among the classification methods employed for the P300 speller, the ensemble of support vector machines (eSVM) is renowned for achieving high accuracy. However, existing eSVM approaches primarily focus on individual classifier accuracy, overlooking the importance of diversity among the classifiers. To address this limitation, we propose a dataset manipulation method that divides the training dataset into distinct groups based on the characteristics of EEG signals generated at different distances between the target letter and the visual keyboard. By training each individual SVM classifier on these diverse groups, we enhance the ensemble's diversity. Experimental results demonstrate that the proposed eSVM approach with increased diversity significantly improves the typing speed of the P300 speller, achieving an average accuracy of 70% with only four repetitions per letter, enabling verbal communication via the Language Support Program.

Keywords: P300 speller, brain-computer interface, electroencephalogram, ensemble of support vector machines, classification accuracy, typing speed, dataset manipulation, diversity.

I. Introduction

The P300 speller is a widely adopted brain-computer interface (BCI) system enabling individuals to spell text on a computer through visual stimulation [1-2]. This system relies on the detection of the P300 component, a positive peak in the electroencephalogram (EEG) occurring approximately 300 ms after the stimulus, which reflects a heightened response compared to other components. To detect P300 signals accurately, various classification methods, including artificial neural networks, linear discriminant analysis, and support vector machines (SVM), have been employed [3-5]. Among these methods, the ensemble of SVMs (eSVM) has demonstrated superior performance in estimating correct letters without true letter information [6]. To foster advancements in signal processing and classification methods for BCIs, the BCI Competition III included P300 speller data, prompting competitors to propose innovative algorithms for accurate letter estimation using training and test data. The eSVM algorithm emerged as the top performer, surpassing single SVM approaches with fewer iterations of training data [7]. By employing an ensemble of classifiers, the eSVM reduces the impact of signal variability by averaging classifier outputs [5].

However, conventional eSVM techniques primarily consider dataset homogeneity in terms of noisy components, neglecting the potential benefits of diversity among classifiers.

Efforts to improve the performance of the P300 speller through ensemble methods have focused on training time and accuracy. Previous attempts employed wavelets and an ensemble of Fisher's linear discriminant (FLD) to reduce training time but resulted in decreased accuracy [8]. Similar outcomes were observed when event-related potential (ERP) signals and FLD were utilized [9]. While clustering training datasets was proposed as a means to reduce training time, only minor improvements were achieved [10]. Additionally, typing speed, an important factor affecting user convenience and the feasibility of real BCI systems, has not significantly improved in previous eSVM studies [8-10]. his paper aims to enhance the typing speed of the P300 speller by modifying the conventional eSVM algorithm. Reducing the number of repetitions in data acquisition enhances typing speed but introduces increased signal variability. To mitigate this issue, we focus on improving the ensemble method by considering both individual classifier accuracy and diversity. Diversity refers to the production of distinct outputs when the same data is fed into multiple classifiers. Higher ensemble diversity, achieved through Metalene Maria Radio Leonard Marchitecture

Mcconstruction of the declaration of the construction of the

Mcconstruction of the Cocost of the Coco

You don't think as a content of the filled of

Macassachusetts Read of the Contraction in

JOURNAL OF DATA-DRIVEN ENGINEERING SYSTEMS

address the computational complexity associated with the eSVM. This complexity arises due to the involvement of multiple SVMs, which require solving constrained quadratic programming problems and recursive channel selection in each classifier. One potential solution to this problem is to explore methods that reduce training data since SVM training is known to have a time complexity of $O(n^2)$, where n represents the number of samples in the training data. Another avenue for research is to investigate alternative classifiers with lower computational complexity and high accuracy for further improvements in the P300 speller.

REFERENCES

- [1] Lenhardt A, Kaper M, Ritter HJ. An adaptive P300-based online brain– computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2008 Apr 3;16(2):121-30.
- Daly JJ, Wolpaw JR. Brain–computer interfaces in neurological rehabilitation. The Lancet Neurology. 2008 Nov 1;7(11):1032-43.
- [3] Gao S, Wang Y, Gao X, Hong B. Visual and auditory brain–computer interfaces. IEEE Transactions on Biomedical Engineering. 2014 Jan 14;61(5):1436-47.
- [4] Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser C, Schwartz NE, Vaughan TM, Wolpaw JR, Sellers EW. A novel P300 based brain–computer interface stimulus presentation paradigm: moving beyond rows and columns. Clinical neurophysiology. 2010 Jul 1;121(7):1109-20.
- [5] M. Cheraghifard, G. Taghizadeh, M. Akbarfahimi, A. M. Eakman, S.-H. Hosseini, and A. Azad, "Psychometric properties of Meaningful Activity Participation Assessment (MAPA) in chronic stroke survivors," Topics in Stroke Rehabilitation, vol. 28, no. 6, pp. 422-431, 2021.
- [6] Schalk G, Leuthardt EC. Brain-computer interfaces using electrocorticographic signals. IEEE reviews in biomedical engineering. 2011 Oct 17;4:140-54.
- [7] Lee MH, Williamson J, Won DO, Fazli S, Lee SW. A high performance spelling system based on EEG-EOG signals with visual feedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2018 May 21;26(7):1443-59.
- [8] Hou Y, Zhou L, Jia S, Lun X. A novel approach of decoding EEG fourclass motor imagery tasks via scout ESI and CNN. Journal of neural engineering. 2020 Feb 5;17(1):016048.
- [9] M. Amini, A. Hassani Mehraban, M. Pashmdarfard, and M. Cheraghifard, "Reliability and validity of the Children Participation Assessment Scale in Activities Outside of School–Parent version for children with physical disabilities," Australian Occupational Therapy Journal, vol. 66, no. 4, pp. 482-489, 2019.
- [10] Allison BZ, Neuper C. Could anyone use a BCI?. Brain-computer interfaces: Applying our minds to human-computer interaction. 2010:35- 54.
- [11] M. Izadi, M. Jabari, N. Izadi, M. Jabari, and A. Ghaffari, "Adaptive Control based on the Lyapunov Reference Model Method of Humanoid Robot Arms using EFK," in 2021 13th Iranian Conference on Electrical Engineering and Computer Science (ICEESC), 2021.
- [12] Treder MS, Blankertz B. (C) overt attention and visual speller design in an ERP-based brain-computer interface. Behavioral and brain functions. 2010 Dec;6:1-3.
- [13] P. Gaderi Baban, Y. Naderi, G. Ranjbaran, and S. Homayounmajd, "Control of delayed nonlinear model of type 1 diabetes using an improved sliding model strategy," Journal of Bioengineering Research, vol. 3, no. 3, pp. 8-15, 2021.
- [14] Brunner P, Joshi S, Briskin S, Wolpaw JR, Bischof H, Schalk G. Does the 'P300'speller depend on eye gaze?. Journal of neural engineering. 2010 Sep 21;7(5):056013.
- [15] Vidaurre C, Kawanabe M, von Bünau P, Blankertz B, Müller KR. Toward unsupervised adaptation of LDA for brain–computer interfaces. IEEE Transactions on Biomedical Engineering. 2010 Nov 18;58(3):587-97.
- [16] Yin E, Zhou Z, Jiang J, Chen F, Liu Y, Hu D. A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm. Journal of neural engineering. 2013 Feb 21;10(2):026012.
- [17] Schreuder M, Blankertz B, Tangermann M. A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue. PloS one. 2010 Apr 1;5(4):e9813.
- [18] Ma Q, Gao W, Xiao Q, Ding L, Gao T, Zhou Y, Gao X, Yan T, Liu C, Gu Z, Kong X. Directly wireless communication of human minds via noninvasive brain-computer-metasurface platform. elight. 2022 Dec;2(1):1-1.
- [19] Kaufmann T, Herweg A, Kübler A. Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials. Journal of neuroengineering and rehabilitation. 2014 Dec;11:1- 7.
- [20] Jin J, Sellers EW, Zhou S, Zhang Y, Wang X, Cichocki A. A P300 brain– computer interface based on a modification of the mismatch negativity paradigm. International journal of neural systems. 2015 May 25;25(03):1550011.
- [21] Hong B, Guo F, Liu T, Gao X, Gao S. N200-speller using motion-onset visual response. Clinical neurophysiology. 2009 Sep 1;120(9):1658-66.
- [22] Finke A, Lenhardt A, Ritter H. The MindGame: a P300-based brain– computer interface game. Neural Networks. 2009 Nov 1;22(9):1329-33.
- [23] Yin E, Zhou Z, Jiang J, Chen F, Liu Y, Hu D. A speedy hybrid BCI spelling approach combining P300 and SSVEP. IEEE Transactions on Biomedical Engineering. 2013 Sep 16;61(2):473-83.
- [24] Anitha T, Shanthi N, Sathiyasheelan R, Emayavaramban G, Rajendran T. Brain-computer interface for persons with motor disabilities-A review. The Open Biomedical Engineering Journal. 2019 Dec 17;13(1).
- [25] Kaufmann T, Holz EM, Kübler A. Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Frontiers in neuroscience. 2013 Jul 24;7:129.
- [26] A. Najari, F. Shabani, and M. Hosseynzadeh, "INTEGRATED INTELLIGENT CONTROL SYSTEM DESIGN TO IMPROVE VEHICLE ROTATIONAL STABILITY USING ACTIVE DIFFERENTIAL," Acta Technica Corviniensis-Bulletin of Engineering, vol. 14, no. 1, pp. 79-82, 2021.