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Abstract  

Speech recordings obtained during Magnetic Resonance Imaging (MRI) of the upper airways often suffer from 

acoustic noise generated by the MRI scanner. This paper focuses on the post-processing of such speech samples using 

adaptive comb filtering to achieve accurate formant extraction. Two types of speech materials were used to validate 

the proposed algorithm: prolonged vowel productions recorded during MRI and comparison data recorded in an 

anechoic chamber. Spectral envelopes and vowel formants were computed from the post-processed speech and the 

comparison data. Additionally, numerical acoustic models and 3D printed vocal tract physical models were used for 

further analysis. The results reveal a significant frequency-dependent discrepancy between the vowel formant data 

obtained from recordings during MRI and the comparison data. This discrepancy is attributed to the acoustical 

changes caused by the surfaces of the MRI head coil, leading to "exterior formants" at frequencies around 1 kHz and 

2 kHz. The observed discrepancy is too substantial to be disregarded when using MRI recordings for parameter 

estimation or validating numerical speech models based on MR images. However, the influence of test subject 

adaptation to noise and the effects of constrained space acoustics during an MRI examination cannot be ruled out. 
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I. Introduction  

Modern medical imaging technologies, including 
Ultrasonography (USG), X-ray Computer Tomography (CT), 
and Magnetic Resonance Imaging (MRI), have revolutionized 
studies of speech and articulation. While each technology has its 
own applicability and image quality characteristics, MRI 
remains an attractive approach for large-scale articulation 
studies due to its potential advantages. However, there are 
several restrictions and challenges associated with conducting 
speech studies during MRI scans, as discussed in previous works 
[1, 2]. To obtain paired data that can facilitate the development 
and validation of computational speech models, it is desirable to 
simultaneously record speech during MRI experiments. 
Unfortunately, the speech signal recorded during MRI is often 
contaminated by artifacts primarily caused by the high acoustic 
noise levels within the MRI scanner. Additional challenges arise 

due to the non-flat frequency response of the MRI-proof audio 
measurement system and the constrained space acoustics within 
the MRI head and neck coils. 

In the field of signal processing, noise cancellation 
techniques are commonly used to enhance speech quality. Two 
main classes of noise cancellation methods are adaptive noise 
cancellation and blind source separation techniques, such as 
FastICA [4]. This article focuses on introducing, analyzing, and 
validating an adaptive noise cancellation algorithm for speech 
recorded during MRI. Compared to blind source separation 
techniques, adaptive noise cancellation offers better tractability 
and can be implemented in the time domain, frequency domain, 
or a combination of both. The algorithm discussed in this article 
is designed based on insights gained from a previous algorithm 
introduced in [2, Section 4]. Other approaches for addressing 
MRI noise are also discussed in [5, 6, 7, 8], which will be 
explored in detail towards the end of this article. 
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Fig 8: Spectral envelopes of all vowel 
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