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Abstract  

Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent condition affecting a significant number of children, 

primarily boys. The diagnosis of ADHD relies mainly on subjective observations and interviews, necessitating the 

development of objective tests for accurate detection. In this study, we propose an ADHD detection method using 

EEG data collected from multiple channels. By employing autoregressive model parameters as features and drawing 

inspiration from the imposter problem in speaker verification, we employ Gaussian mixture models to define ADHD 

and universal background models. Subsequently, a likelihood ratio detector is designed. The effectiveness of this 

approach is evaluated using traditional performance measures such as the area-under-the-curve and equal-error-

probability. Our results, obtained from a limited male database of approximately 6 years of age, demonstrate that the 

proposed approach achieves high detection probability and low equal error rate simultaneously. Notably, EEG data 

collected during an attention network task are utilized for analysis. Additionally, we explore the impact of 

contaminated data on the detection process. This research contributes to the advancement of objective ADHD 

detection methods and highlights the potential of EEG-based approaches in improving diagnostic accuracy. 
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I. Introduction  

In the United States, Attention Deficit Hyperactivity 
Disorder (ADHD) affects around 9.5% of children between the 
ages of 4 and 17 [1]. The diagnosis of ADHD relies on the 
Diagnostic and Statistical Manual of Mental Disorders (DSM) 
published by the American Psychiatric Association (APA), 
which outlines specific symptoms used by behavioral scientists 
to determine if an individual has the disorder. While the DSM-
V recognizes different subtypes of ADHD, this study focuses on 
distinguishing between Non-ADHD (NA) and ADHD (A) 
subjects only [2-4].  

Given that ADHD diagnosis is based on subjective 
observations, researchers have been exploring quantitative 
techniques to aid in the diagnosis process. Successful 
classification of ADHD and Non-ADHD subjects has been 
achieved in various feature domains, indicating some degree of 
separability between A and NA subjects [5]. This study 
investigates the use of a Gaussian-Mixture-Model-based 
universal background model (UBM) for classifying A and NA 

subjects, specifically 6-year-old males. UBMs have been 
previously employed in speaker verification and identification, 
demonstrating high accuracy even in noisy conditions. Recently, 
GMMs and UBMs have also been studied for EEG pattern 
detection and classification [6-7]. 

The hypothesis of this study is that a UBM can address the 
limitations of other classification methods. Traditionally, the 
A/NA classification problem has involved extracting features 
from EEG data obtained during resting or activity tasks. 
However, classification accuracy tends to suffer when subjects 
do not perform the instructed tasks, potentially resulting in poor 
performance [8]. By constructing a UBM using numerous 
feature vectors extracted from different activities, classification 
robustness can be enhanced.  

To the authors' knowledge, this study is the first to utilize a 
GMM-UBM for classifying ADHD and Non-ADHD subjects. 
The evaluated features are autoregressive (AR) parameters 
extracted from time intervals when subjects were at rest or 
performing an attention network task (ANT). UBMs were 
trained using a dataset comprising 2 A subjects and 2 NA 

  



   

 

 



   

 

 



   

 

 



   

 

was conducted using Receiver Operating Characteristics (ROC) 
and revealed variations depending on the proportion of ANT and 
resting EEG data in the training and testing sets. When 100% of 
the feature vectors originated from ANT activity, the mean area 
under the ROC curve (AUC) was 0.97, with an equal error rate 
(EER) of 0.082. However, as resting data was added to the UBM 
and ADHD models, performance decreased, resulting in a mean 
AUC of 0.73 and a mean EER of 0.32 when 50% of the feature 
vectors came from ANT activity and the remaining 50% from 
resting EEG. 
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