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Abstract  

Sensorineural hearing loss is a condition characterized by damage to the inner ear or nerve pathways connecting it to 

the brain, resulting in hearing impairment. Cochlear implants have been developed as a solution for children with 

bilateral or unilateral sensorineural hearing loss. However, the success of cochlear implant surgery relies on the 

presence and functionality of the cochlear nerve. Therefore, accurate segmentation and measurement of the cochlear 

nerve are crucial for surgeons to predict the outcome of the cochlear implant procedure. In this study, we propose a 

modified region growing segmentation algorithm that accurately segments the cochlear nerve region. The 

segmentation accuracy is assessed using various parameters, including Jaccard, Dice, False Positive Dice, and False 

Negative Dice. Additionally, the segmented region is measured using long diameter, short diameter, and cross-

sectional area. Statistical analyses, such as intra/inter-observer correlation and limits of agreement, are conducted on 

the cross-sectional area of the cochlear nerve to assess the reproducibility of the automated measurement. This 

automated segmentation and measurement approach holds promise for predicting the outcome of cochlear 

implantation in individuals with sensorineural hearing loss. 
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I. Introduction  

Dictionary learning methods have found applications in 
various fields, such as medical image classification, data 
classification, face recognition, face identification, diagnostic 
magnetic resonance image super-resolution, image 
representation, joint sparse principal component analysis, patch 
alignment, object tracking, MR spectroscopy quantification, and 
medical image super resolution[1]. The construction of a sparse 
representation model relies heavily on dictionary learning, 
which is a critical issue. In image reconstruction based on 
dictionary learning, both the sparse coefficients and the 
dictionary itself play important roles in achieving high-
performance reconstructions [2].  

Sparse representation-based signal representation involves 
approximating a signal using a linear combination of other 
signals, known as atoms, from a set of signals called dictionaries. 
Therefore, the quality of signal sparse coding is influenced by 
the choice of dictionary [3]. Optimizing dictionary learning has 
garnered attention in various signal processing domains, 
including images and audio. The prevalent approach for learning 
dictionaries involves solving an iterative minimization problem. 
In the sparse coding stage, the dictionary is fixed in advance 

while the sparse coefficients are solved, and in the dictionary 
update stage, the dictionary is generated based on the obtained 
coefficients [4]. Several dictionary learning methods have been 
proposed for the sparse coding stage. For instance, the 
Orthogonal Matching Pursuit (OMP) method has been applied 
to Method of Optimal Directions (MOD)-based dictionary 
learning, and the Iterative Shrinkage Thresholding (IST) 
algorithm has been used for Majorization Method (MM)-based 
dictionary learning. Additionally, Maximum A Posteriori 
(MAP)-based dictionary learning employs the gradient descent 
method and dictionary column normalization [5]. However, 
these methods do not take into account uncertain parameters, 
such as the regularization parameter. Another class of dictionary 
learning methods involves machine learning-based approaches, 
including K-Singular Value Decomposition (K-SVD) and frame 
design techniques [6]. Previous works have also focused on 
extracting features from edges, textures, and structures for 
dictionary generation, as well as constraint-based dictionary 
training and iteration-based sparse domain image deblurring 
using a single high-resolution dictionary. While these methods 
directly sparse code from the dictionary update, they fail to fully 
and quickly extract the potential expressive information of the 
dictionary [7]. In this paper, we propose a training sample 
selection approach to enhance dictionary learning performance. 
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 consistency method and effectively distinguishes global 
diversity by calculating the maximum first and second-order 
gradients. 
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