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Abstract  

The opponent model of sleep-wake regulation proposes two opposing drives for sleep and wake. However, accurately 

measuring these drives in the electroencephalographic (EEG) signal has been challenging. In previous research, we 

identified that the first and second principal components of variation in the EEG power spectrum can serve as markers 

for the sleep and wake drives, respectively. This study aimed to validate and expand the measurement methodology 

by introducing a novel approach to uncover differences in the EEG signatures of these drives. New single EEG 

measures were calculated from recorded waking and sleep EEG signals of 100 participants, encompassing night 

sleep, multiple naps, and sleep deprivation. These measures captured differences between distinct sleep-wake sub-

states by analyzing the differences between pairs of EEG spectra. Two typical patterns emerged as spectral EEG 

signatures of the sleep and wake drives. Principal component analysis of the calculated single measures yielded the 

two largest components representing these opposing drives. The time courses of scores on these components closely 

resembled the time courses of scores on principal components of variation in the EEG power spectrum. The findings 

demonstrate that this methodology enables quantitative evaluations and model-based simulations of the regulatory 

processes underlying normal and abnormal sleep-wake alternations. 
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I. Introduction  

Since the introduction of the two-process model, which 
suggests two fundamental processes in sleep-wake regulation 
(homeostatic and circadian), slow-wave activity in the 
electroencephalographic (EEG) signal has been widely 
considered as the standard for quantifying the homeostatic 
process or sleep drive [1]. It has been used to describe, predict, 
and simulate the repayment of sleep debt during Non-Rapid Eye 
Movement (NREM) sleep following periods of wakefulness. 
However, the circadian process, which is another basic 
regulatory process, was not expected to be identified through 
EEG analysis. An alternative conceptualization known as the 
opponent model interprets these two processes as competing 
drives for sleep and wake, yet EEG analysis was not anticipated 
to reveal an indicator of the opposing wake drive associated with 
the circadian process [2]. The EEG power spectrum, as a 

reflection of the combined influences of the opposing sleep-
wake regulatory processes, can be separated into orthogonal and 
uncorrelated principal components to discern the brain 
signatures of these processes. It has been observed that the score 
on the 2nd principal component shows consistent changes 
during the transition from the alertness sub-state of wakefulness 
to the deepest sub-state of sleep, known as slow wave sleep or 
N3 stage [3]. In contrast, the score on the 1st principal 
component remains low during wakefulness and stage 1 sleep, 
but rapidly increases after entering established NREM sleep 
stages (stages 2 and 3). These temporal patterns of the principal 
component scores suggest that the 1st and 2nd components of 
the EEG spectrum represent the opposing drives for sleep and 
wake, respectively [4-6]. While slow wave activity in the EEG 
power spectrum appears to reflect the combined effect of the 1st 
and 2nd principal components, it cannot be interpreted as a pure 

  



   

 



   

 

 



   

 

 



   

 

 



   

 

 



   

 

 



   

 

slow wave activity in the waking EEG signal provide no 
information about these drives, unlike when measured during 
sleep. Increased propensity to enter NREM sleep is often 
referred to as "accumulation of sleep pressure," but slow wave 
activity indexes are insufficient for directly measuring such 
accumulation until the actual onset of NREM sleep. In contrast, 
we have previously demonstrated that the time course of the 
score on the 2nd principal component, obtained from analyzing 
the waking EEG signal, reliably informs about the processes 
underlying transitions between wakefulness sub-states. Lastly, 
data on slow wave activity and the score on the 1st principal 
component differ in their indication of the involvement of stage 
1 (N1) in the process of sleep debt repayment. 

 

  

 

 

VII. Conclusion  

Although slow wave activity indexes are widely used as EEG 
indicators for one of the fundamental regulatory processes 
proposed by sleep-wake regulation models, they are inadequate 
for examining the postulated interaction between these 
processes. Previous research has suggested using two other 
indexes, namely the scores on the 1st and 2nd principal 
components of the EEG spectrum, to differentiate the 
contributions of these basic sleep-wake regulatory processes. 
The present analysis builds upon and validates this finding, 
introducing a slightly different approach aimed at directly 
extracting the EEG signatures of the opposing regulatory 
processes. Differential spectra, which represent the 
discrepancies between pairs of spectra at different levels of these 
processes, were calculated and utilized to derive a 
comprehensive set of single measures summarizing these 
differences. Through principal component analysis of this set, 
significant loadings of each individual measure on either the 1st 
or 2nd principal component were identified. These measures, 

akin to the scores on the 1st and 2nd principal components of the 
EEG spectrum, were interpreted as EEG indicators for the two 
opposing sleep-wake regulatory processes. Moreover, this 
approach enabled the visualization of the EEG signatures 
associated with each process. Consequently, this methodology is 
recommended to facilitate quantitative evaluations and model-
based simulations of the opposing regulatory processes that 
underlie normal and abnormal alterations between sleep and 
wake states. 
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